2019.7.26 土木学会関西支部 鋼橋の維持管理全体の高度化に関する調査研究委員会

関空国際空港連絡橋の応急復旧工事について

西日本旅客鉄道株式会社 構造技術室 坂田 鷹起

West Japan Railway Company

講演内容

- 1. 被災状況
- 2. 応急工事
- 3. 確認列車による計測
- 4. 復旧工事

橋長:3,750m (全体)

構造:鋼床版合成3径間連続ダブルデッキトラス(2,700m)

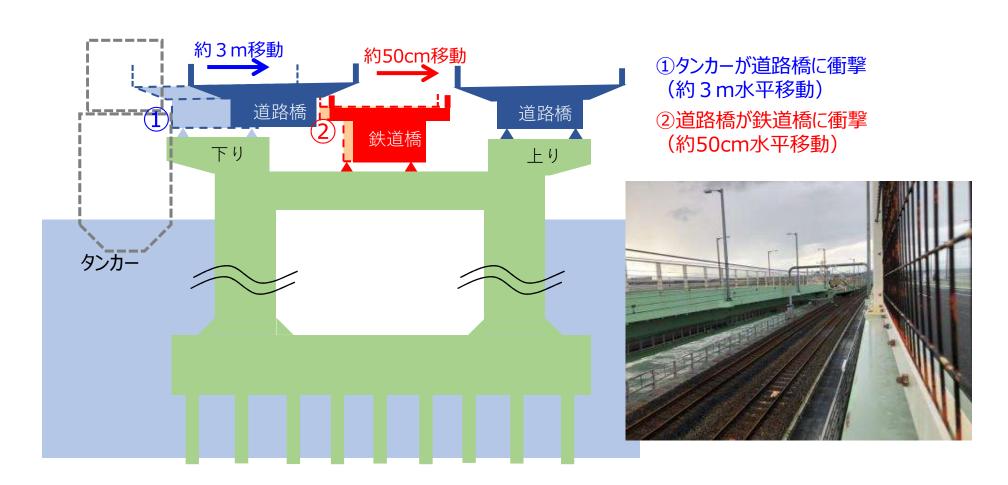
台風21号の被害 2018年9月4日 非常に強い勢力で近畿地方に上陸

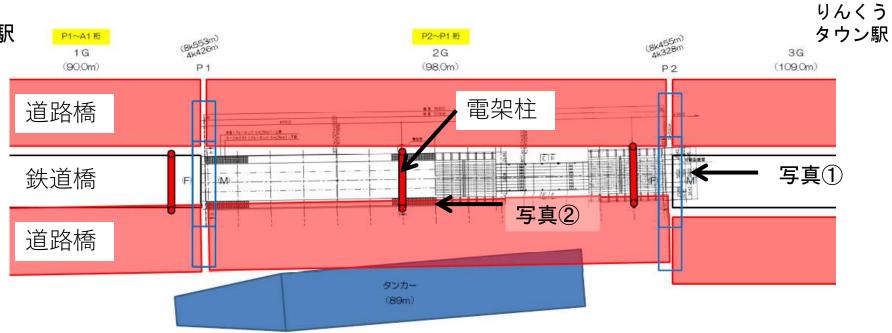
電柱などが倒壊 (毎日新聞より)

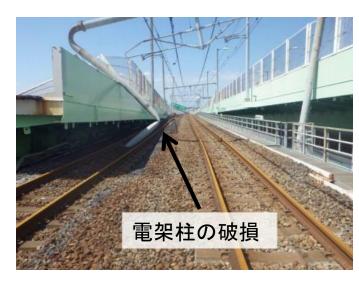
高潮により関空島冠水 (毎日新聞より)

台風21号の特徴として、強風と高潮による被害が大きかった.

気象庁のデータでは関空島で**最大瞬間風速 58.1m/s** 大阪港の**最高潮位 329cm**

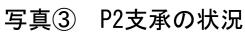


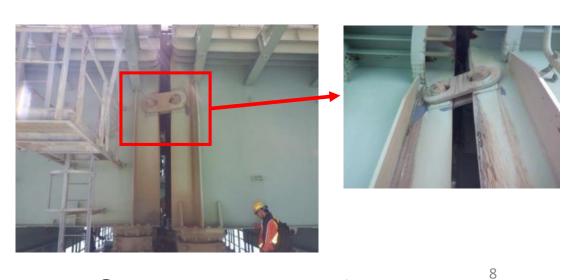

発生日時: 2018年9月4日 14時頃


発生箇所:関西空港連絡線

りんくうタウン・関西空港 8k500付近(P1・P2橋脚付近)

関西 空港駅


写真① 線路上状況



写真② バラスト止めの損傷

関西 りんくう 空港駅 タウン駅 P1~A1 桁 P2~P1 桁455m) 1 G 2G 3G 写真④ (90.0m) (98.0m) (109.0m) タンカー (89m) 写真③

写真④ 耐震連結工付近の腹板の変形

関西 空港駅

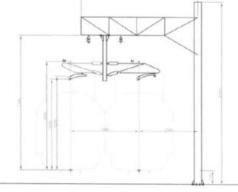
りんくう タウン駅 1G (900m) P1 (980m) P2 (1090m) 写真⑥ (1090m) F3 (1090m) F3 (1090m)

写真⑤ P 2 付近橋側歩道 ブラケット損傷状況

写真⑥ P1付近橋側歩道 ブラケット損傷状況

9月5~8日 現地調査(損傷箇所の確認), 復旧方針の検討

道路橋の標識ブラケットの衝突


箱桁内面の調査

破損した支承の調査

電柱の応急復旧検討 (門型から片持ち式へ)

9月9日~ 応急工事開始

バラスト・舌板の撤去

ジャッキ設置

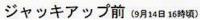
- ・沓設計反力が500tであったため、600tジャッキを使用.
- ・ジャッキアップ・スライド時にバラストを巻き込まないように 事前にジョイント部のバラスト・舌板を撤去.
- ・下部工の梁内部(ジャッキ直下近傍)に十分な補剛材があり, ジャッキ設置のための補強は不要と判断した. →早期復旧につながった.

道路橋の撤去

9月12日 P1-P2間の道路橋撤去 9月14日 A1-P1間の道路橋撤去

道路橋撤去(管理者)NEXCO西日本


(施工会社) IHIインフラシステム株式会社


道路橋桁重量:約1000t

A滑走路が閉鎖されており、高さ制限を受けなかったことより、

国内最大級の3700t級フローティングクレーンによる一括撤去工法が採用された.

桁ジャッキアップ&スライド

位置調整後 (9月14日 17時頃)

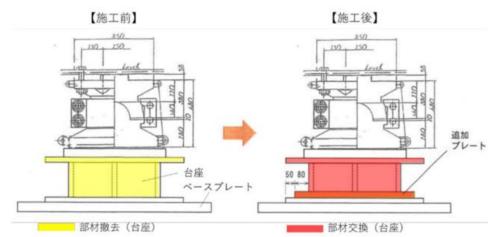
約50cm横ずれした鉄道桁をジャッキにより持ち上げ移動

【9/14(実績)】

1回目ジャッキアップ開始 15: 55

桁縁切り完了 16:09(ジャッキアップ荷重(左)440 t、(右)420 t)

横移動1回目完了 16:16 (移動量160mm、スライド荷重50t)


2回目ジャッキアップ開始 16:31

横移動2回目完了 16:39 (移動量180mm)

10:39 (多動量180mm) 3回目ジャッキアップ開始 16:53

横移動3回目完了 17:08 (移動量160mm)

鋼製台座の交換

ジャッキアップ・スライド後,損傷した鋼製台座を撤去. 製作した鋼製台座とシュー・ベースプレートを溶接で取り付け.

軌道・電気設備復旧

電架柱の破損

バラスト止め仮復旧

桁移動後

電気設備の復旧

3. 確認列車による計測

○耐荷性および使用性の確認(計算値との比較)

- ・支間中央のたわみ
- ・支間中央下フランジの応力
- ・P1側支点部の水平変位(異常たわみがないことの確認)
- ・P2側支点部の変位・回転(ピボット部の機能を確認)

○損傷部材の確認

・P2側桁端部の変形⇒腹板の鉛直応力を計測 (支点反力支持機能に異常がないことを確認)

○下部工の確認

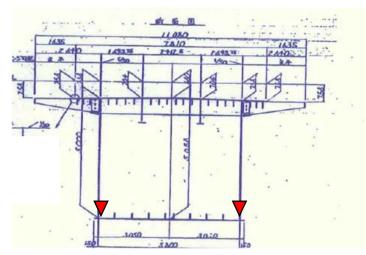
・橋脚天端での変位(沈下・傾斜)を計測

○列車動揺

・動揺測定器による計測

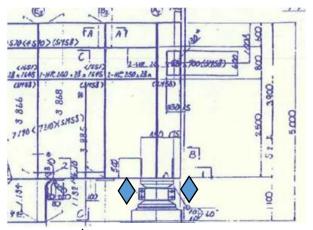
No.	測定項目	測定•確認位置	測定方法•機器	基準値	
1	たわみ測定	P1-P2 間桁 左右主桁	I-DAP システム	193mm:列車走行安全性 1/500	
2	支承部挙動	P1 橋脚支承部 P2 橋脚支承部	目視	列車通過時に異常な挙動がないこと	
3	列車動揺	橋りょう位置	動揺測定器	上下動 0.25g 左右動 0.20g	

測定状況(応力測定)

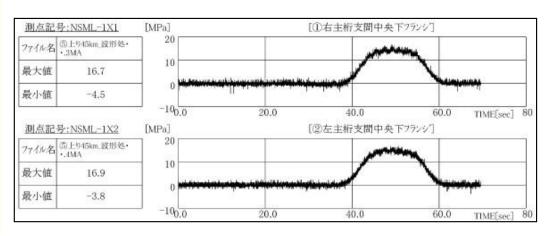


測定状況(たわみ測定)

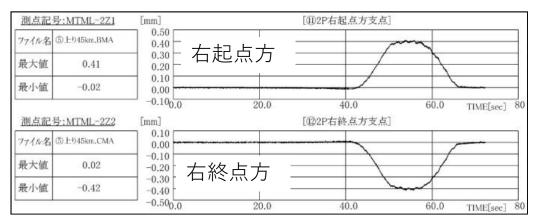
3. 確認列車による計測


計測結果

○支間中央下フランジの応力


▼ ひずみ測定位置

○P2側支点部の変位・回転



鉛直変位測定(1支点2箇所)

上り45km/h

上り45km/h

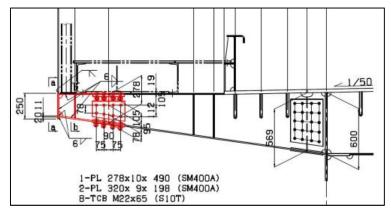
3. 確認列車による計測

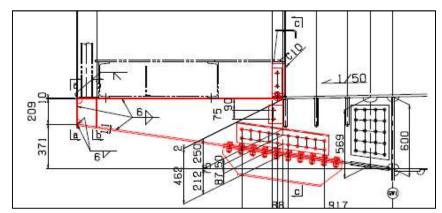
計測結果まとめ

	No.	測定項目	測定位置・確認位置	測定方法・機器	基準値	上り45km/h
	1	たわみ測定	左主桁(支間中央)	I-DAP	L/500=96.6/500 =193mm(スパン中央値) 117mm(支点部から20m) 参考値(計算値) 45km徐行:31mm(スパン中央) :19mm(支点部から20m)	193mmに対して 測定値27.6mm
判断項目	V		右主桁(支点から20m位置で測定)			117mmに対して 測定値15.8mm
	2	│ 文承部至動 │(鉛直・水平変付)	P1橋脚 支承部	BMCシステム+目視	列車通過時に異常な挙動がないこと	異常なし
			P2橋脚 支承部		列車通過時に異常な挙動がないこと	異常なし
	3	列車動揺	橋りょう位置	動揺測定器	上下動:0.25g以下 左右動:0.20g以下	上下動: 0.12 左右動: 0.01以下
泰	5	支間中央 応力測定	下フランジ(左)桁内部	BMCシステム	【参考値(計算上)】 45km徐行:18.6MPa(単線載荷時)	16.7MPa
参考測定			下フランジ(右)桁内部			16.9MPa

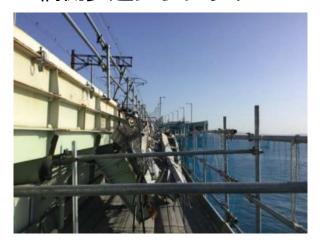
計測の結果異常無し. 列車運転再開が可能と判断した.

橋側歩道ブラケット,電架柱支持梁,バラスト止め等の復旧方針を検討


橋側歩道ブラケット


電架柱支持梁

バラスト止め

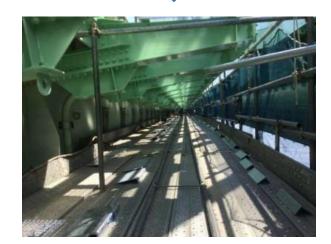

先端のみ損傷

ブラケット全体が損傷

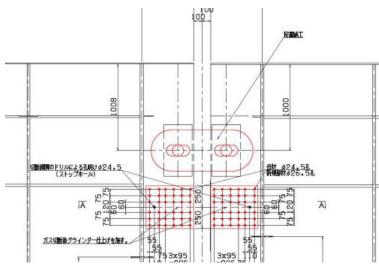
損傷数が多い橋側ブラケットは,損傷状況に合わせて補修方法をパターン化.

橋側歩道ブラケット

電架柱支持梁



バラスト止め

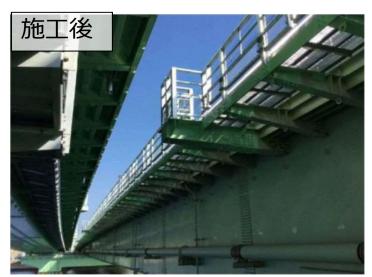


桁端の変形箇所

変形の大きな箇所をガス切断し、 加熱矯正後当板

復旧状況

A1-P1間全景



P1-P2間全景

